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Solutions of the Wheeler-DeWitt Equation 
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This paper deals with the solution of the Wheeler-DeWitt equation with a massive 
scalar field for a Kantowski-Sachs metric using the Born-Oppenheimer approxi- 
mation. Also, solutions under different assumptions are determined to indicate 
different stages of evolution of the universe. Finally, these wave functions in 
the asymptotic regions are compared with the Hattie-Hawking wave functions 
(including second-order corrections) evaluated using the concept of micro- 
superspace. 

1. INTRODUCTION 

An interesting and challenging problem in physics today is the applic- 
ability of  quantum mechanics to the gravitational field. So among the variet- 
ies of  physical problems to which quantum mechanics has been applied, 
those involving gravitation occupy a distinctive position. These peculiar 
circumstances make the usual interpretative framework of  quantum mechan- 
ics vulnerable. According to DeWitt (1967), the two major difficulties are as 
follows: 

(i) The very concept of  general covariance (irrespective of  the form of  
the action) is problematic, i.e., there is no a priori notion of  time 
or position. 

(ii) There is no natural probabilistic interpretation in the quantum 
region, as the wave equation (Wheeler-DeWitt  equation) in quan- 
tum gravity is a second-order hyperbolic partial differential equa- 
tion, and hence the square of the wave function cannot be taken 
as a probability density. 

The physical consequences of  quantum gravity are important when 
gravitational fluctuations are large. So it is very significant at very early 
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stages of cosmic evolution. But if we consider the whole universe for the 
quantum description, further problems arise. 

(iii) The idea of an external observer implicitly assumed in quantum 
mechanics is not applicable to the evolution of the universe, as, by 
definition, the universe includes everything inside it, though this 
may partially be resolved by the relative-state formalism of Everett 
(1957). 

Finally, the lack of boundary conditions of the wave function of the 
universe creates the following difficulty: 

(iv) Due to the linearity of the Hilbert space, the wave function is not 
unique, i.e., an infinite set of wave functions indicate the same state 
of the universe. So it is difficult to pick out which of these wave 
functions corresponds to our real universe. 

Regarding the fourth problem, a very appealing proposal for the bound- 
ary condition of the universe is given by Hartle and Hawking (1983) [one 
may mention another interesting proposal, namely the tunneling approach 
by Vilenkin (1988)]. According to this proposal, the wave function for the 
state of minimum excitation is defined uniquely by summing over all the 
compact four-geometries (on the manifold M)  with a given three-geometry 
and matter field configurations on a hypersurface (appearing in the argument 
of ~HI~), in the Euclidean path integral formalism: 

~HH(h~, c~) = ~d[g~,v] d[~b] exp(--Iz) (1) 
d 

where Iz is the Euclidean action of the gravitational field guv and the matter 
field ~b (of mass m) and is given by 

-- 1~6~ ~ d3x "/~" K -  d4x x/g" LM (2) 

(the notations have their usual meaning). One can formally show that grin 
satisfies the Wheeler-DeWitt (WD) equation 

~ h o ~ -,S hkt 
(3) 

where 

L -1/2 G~jk, = :h ( h~hj, + h~,hjk- h~jhk,) 
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and 3R is the curvature scalar of the three-metric h U on S. The wave function 
is also invariant under coordinate transformations in S: 

where a vertical stroke denotes covariant differentiation. 
Now the WD equation is a functional differential equation on an infin- 

ite-dimensional space (superspace). G~jkt is the metric on superspace with 
signature ( - + + + + + ) .  So the WD equation can be thought of as a hyper- 
bolic equation on superspace with h 1/2 as time coordinate. One may note 
that the wave function ~ is invariant under diffeomorphisms, i.e., ~' is a 
functional of the three-geometry and not of the particular three-metric ho.. 
In order to solve the WD equation one must approximate it to a finite- 
dimensional submanifold (minisuperspace). 

Moreover, the path integral (1) cannot be evaluated exactly due to 
indefiniteness of the measure. The qualitative behavior at sufficiently small 
three-geometries h~ can be obtained by semiclassical approximation as 
(Hawking, 1984) 

~'HH ~ P exp(-IE ) (4) 

Here IE is the Euclidean action evaluated at the compact real Euclidean 
solution of Einstein's equations with induced metric h o. on the boundary. P 
is the semiclassical prefactor indicating quantum fluctuations around a 
classical Euclidean background. Also, for large three-geometry, the classical 
analogue to equation (3) is the Hamilton-Jacobi equation, which is obtained 
through the WKB approximation: 

~" = Re[C- exp(iS)] (4a) 

where C is a slowly varying function and S is the Hamilton-Jacobi function. 
As U/HH is real, the probability current density is identically zero; therefore 
no measure of probability is possible for this wave function. Thus, as far as 
the boundary condition is concerned, the proposal is inviting, but regarding 
other fundamental problems (stated above) it does not seem to offer satisfac- 
tory answers. 

In Section 2 the basic equations for a Kantowski-Sachs metric are 
formed with some classical analysis. A detailed analysis of classical results is 
found in the Appendix. The wave functions based on the proposals of Hartle 
and Hawking (1983) and of Vilenkin (1988) are evaluated with the concept 
of microsuperspace (Halliwell and Louko, 1989) in Section 3. Section 4 deals 
with the solution of the Wheeler-DeWitt equation in the Born-Oppenheimer 
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approximation and these results are compared with the above wave functions 
in the asymptotic regions. The conclusions are given in Section 5. 

2. THE BASIC EQUATIONS 

The four-metric in the Kantowski-Sachs model is (Chakraborty, 1990a) 

dS 2 = p2[-N2( t) dt 2 + a2( t) dr 2 + b2(t) df~ 2] (5) 

Here r varies from 0 to 2Jr, d f ~  is the metric on a unit 2-sphere, and the 
overall prefactor p2 = G/2Jr (G is the gravitational constant). The Lorentzian 
action and the field equations for this metric ansatz are 

i = _ l _ ~ N a b 2 ( 2  d~__~ ~2 1 ~p2 ) 
2 0  \ N  a b N2b 2 b 2 N 2t-mzq~2 dt (6) 

and 

2--+b2ab b e q52-m2~b2=O (7) 

b" t~ 2 1 ~ 2 _ m 2 ~ 2 = 0  (8) 

~ + b-"+ a-" b-" + q~2- m2~b2 = 0 (9) 
a b a b  

~ + ( 2 + 2  ~) q~+m2~ b=O (10) 

( " -  d/dO. Equation (7) is the scalar constraint equation, and the equation 
of continuity is given by equation (10). The Wheeler-DeWitt equation is 
obtained from the constraint equation, replacing the momentum variables 
by the corresponding quantum mechanical operator, and the form is 

a 1 a a _ff~a + _ _ _ _  b q 
bbq b 

1 62 a_l_~m2r~Zab2 ] 2ab 2 Oq~ 2 2 gt=O (11) 

Here p, q denote some of the ambiguities in the factor ordering. The wave 
function gt is a function of three variables: gt~ gt(a, b, ~b). Hence in this 
model the superspace is reduced to a three-dimensional manifold, 0_<a, 
b<oe,  -oe  <q~<+ oe. 
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Since the values of p, q do not affect the nature of the solution to a 
great extent, we take p to be 1 and q to be 1/2. Hence the above equation 
becomes 

_ a 2 a2b 2 + mZq~2a2b 4 
2 a b  a ~ b  gaZ OqbZ V=0  (12) 

Let us now substitute 

a = e ~, b = e t3- ~ 

Then the d'Alambertian becomes diagonal and the resulting WD equation 
is 

~21[/ ~2V ~21ff e2~v+m2(bZ e2(2~-~)v=O (13) 
~f12 0a2 0r 

The initial conditions for the Lorentzian trajectories which are solutions 
of the field equations are (Chakraborty, 1990a) 

a(0)  = 0, b(0)  = 1 / 6 ,  q~ (0) = q~o 
(14) 

~(0) = ~ a, &0) =0, $(0) =0 

(here the argument 0 stands for t=0),  where p is arbitrary and 
3 = mdpo /v /3 .  The Hamilton-Jacobi function, which is the action correspond- 
ing to Lorentzian trajectories, is given by (Chakraborty, 1990a) 

S = - a b ( � 8 9  2 - 1)1/2 (15) 

Hence in the WKB approximation the wave function in the classical region 
is [see equation (4a)] 

V -~ Re[C exp(iS)] (16) 

3. WAVE FUNCTIONS IN KANTOWSKI-SACHS 
MICROSUPERSPACE MODEL 

This section is a review of the work of Chakraborty (1990b). The Eucli- 
dean four-metric in the Kantowski-Sachs ansatz is 

d S  2 = p2[N2 (r) dr 2 + a2(r) d r  2 + b2(r) d ~  2] (17) 
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The Einstein-Hilbert section for the metric ansatz (17) in the Euclidean 
version is 

In=~ N dr - a -  2gtN2 N2 HZab a (18) 

( . - d / d r  in this section). Here, HZ=m2q~ 2 is constant, as the scalar field 
~b is very large and almost constant at very early stages of the evolution 
(Chakraborty, 1990a). Accordingly, the Euclidean field equations are 

2b/) +/~z = N2(1 _ H2b 2) 

and 

(tt~ + bii + gttJ + N2H2ab = 0 

(19) 

(20) 

a/~ 2 2d/~b 
a H2ab 2 = 0 (21) 

N 2 N 2 

The solution for these field equations are 

cos( N r,__HI (22) 
a(r) =al \ x~ ~ / 

b(r)=H \ / 

where the boundary conditions based on the HH proposal are 

a=al, fi=0, b=0,  b = N  at v=0  (24) 

(al is arbitrary). 
In the concept of microsuperspace, the four-metrics are labeled by an 

arbitrary parameter (say b0. So the class of four-metrics under consideration 
have the following scale factors: 

a(r) =a~ cos(~l~ ) (25) 

b(r) =b~ sin(~-~) (26) 
1 

Thus the action for this class of metric is 

a l b l [ - 2 s i n ( ~ * ) +  sin3(NT*/bl) (H2b~+ 3)1 (27) 
/E(b 1 )=-2-  3 
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We now define 

and a new variable 

c = b(T*) = bl sin(NT*/bl) 

d=a(T*) =a~ cos(NT*/bj) 

(28) 

(29) 

respectively, with 

or 

and 

[1/(cd)I/2](H2C/3 - l) 1/4 exp(-ff, ) 

( cd ) I /2 (HT2_I )  '/4 [- [ a 2 c  2 1 cos~cdl 3 _1)1/2+~_) 

I~ = ~ z cd(1 -~-/H2C2] ~/2 

{H2C 2 )1/2 
f f ,=Tied~ 3 - 1  

(34) 

(35) 

Z = cos(NT*/bl) (30) 

So the action (27) now simplifies to 

IE(z, c, d)=~-  32 (31) 

Hence the path integral expression of the wave function based on the Hartle 
and Hawking (1983) proposal is now reduced to a single ordinary integration 
over z as 

V(c, d ) =  f r  dz/1(z, c, d) exp[-IE(z, c, d)] (32) 

where ~t is a measure of integration and F lies in the complex z plane such 
that (32) converges. Now the integration over z is evaluated by the method 
of steepest descent; for detailed analysis see Chakraborty (1990b). The 
classically forbidden and allowed regions correspond to HzCZ<3 and 
H 2C 2 ~ 3, respectively. 

The wave functions (to second order) in these regions are 

[1/(cd)1/2](1 -H2C2/3) 1/4 exp(-I~:) (33) 
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for different choices of the convergent contours. So the wave function based 
on the HH proposal is not unique; it depends on the choice of the contour 
(Halliwell and Louko, 1989). 

The wave function due to the approach of Vilenkin (1988) does not 
give any boundary condition, but determines the unique contour and is given 
by 

1 (H~C2) 1/4 
(cd)l/2 1- exp(-I - )  for H2C 2<3 (36) 

and 

l__(H2C2_ ),/4 
(cd)l/2\ 3 1 exp(-ilL) for H2C2>3 (37) 

Finally, we note that the measure p is taken to be one throughout the 
calculation. Different choices of p only change the phase factor of the wave 
function. 

4. SOLUTION OF THE WHEELER-DEWITT EQUATION 

In this section we solve the Wheeler-DeWitt (WD) equation (13) using 
the Born-Oppenheimer approximation (Kiefer, 1988). The motivation for 
performing the Born-Oppenheimer approximation in the present case is that 
gravitational degrees of freedom can be regarded as heavier than matter 
degrees of freedom. Accordingly, let 

r c.(a, 3)r 3, r (38) 

where the r  depend adiabatically on a, 13 and are the eigenfunctions of the 
Hamiltonian for the damped harmonic oscillator: 

~2 
Hr~e = - ~ +  (.02(a,/3)r - -  e2~ (39) 

This harmonic oscillator in r has the frequency 

co(a, f l )=m e 2p-a 

and the eigenvalue equation is 

HreaO.(a,/3, r  fl)O.(a, /3, d?) 
The energy eigenvalues E.(a, fl) also depend adiabatically on a,/3 and are 
given by 

E.(a, f l )= (2n + 1)m e 2~-a- e 2~ (40) 
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The energy eigenfunctions ~.(a, fl, ~b) have the expression 

O.( ct, fl , c~ ) = (2,,n!),/2 H.(~b[co(a, fl)]1/2) 

• fl) ~ ]  (41) 

(the notations have their usual meaning). Inserting (38) into (13) yields 

[ 1 
+ 2 ~ \ - - ~  &fl Oa O a /  ~C"\c3f l2  ~a2J =0 

Taking the scalar product with (I)e and using the orthonormal property of 
the eigenfunctions {~.}, we have 

�9 ~ ~ ~ +Ee(a, ~) C~(a, ~) 

&zr "~ 
~ 0  

Neglecting the coupling terms, according to the Born-Oppenheimer approxi- 
mation, the above equation simplifies to the two-dimensional partial differ- 
ential equation 

~ 2 c~ 2 } 
~-fi2 aa2 +-E.(a, fl) C~(a, fl)=0 (42) 

This is similar to the WD equation for the FRW metric. 
We now make a similar expansion for C.(a,  fl) with a as the adiabatic 

parameter: 

c.(a, g)=Z ~k(a),~(a, ~) (43) 
k 

where rlk(a, fl) are the eigenfunctions of the differential equation 

~21~k l-e2#O(ot)rlk=X~rli~ (Xk is arbitrary) 
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with 

So by the substitution 

O ( a ) = ( 2 n +  1)m e - s -  1 

Z = e  p 

the eigenvalue equation reduces to a Bessel (or modified Bessel) equation 
and we have 

ok(a ,  f l ) = & k ( e n , f O ) ,  0 > 0  

= Izk(e ax/~),  0 < 0 (44) 

Again substituting (43) in (42) and using the above eigenvalue equation, we 
have 

(d2r ) OCk ~r]k . 02/]k 0 

Taking the scalar product with 7?t(a, fl) (with the orthogonal property) and 
neglecting the cross terms, we find the differential equation for ~k: 

d2~ 
da m 2k~k = 0 

i.e., {k = exp(~s 
Hence the general solution of the Wheeler-DeWitt equation (13) is 

L ~ (2nn!)ll ~ H.(~[o~(a,/7)] ~/2) 

• ~l)/2]r or I,,(ee I,/i~i)} exp(+&a) 
where n takes positive integral values or zero, but k may take for convenience 
integral values (including zero). 

The oscillatory nature of Jn (or exponential nature of I r) in the asymp- 
totic region shows that the above solutions of the Wheeler-DeWitt equation 
behave correctly in the classical (or classically forbidden) region. Thus, the 
nature of the solutions of the Wheeler-DeWitt equation (by the Born- 
Oppenheimer approximation) is identical to that of those derived from the 
path integral formalism and also with equation (4a) in the classical solution. 

5. CONCLUSION 

The solution of the Wheeler-DeWitt equation, evaluated using the 
Born-Oppenheimer approximation, agrees qualitatively with the wave func- 
tion in the path integral formalism. An exact comparison is not possible due 
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to the arbitrary measure in the path integral and the factor ordering in the 
Wheeler-DeWitt equation. Moreover, the path integral and the Wheeler- 
DeWitt equation are evaluated approximately. 

In the Born-Oppenheimer approximation the treatment of a as the 
adiabatic parameter instead of 13 in equation (43) has no physical reason; 
it is only for reasons of mathematical simplicity. Also, the solution of the 
Wheeler-DeWitt equation using the above approximation is complicated 
and lengthy in form. So it is very difficult to draw any definite conclusion 
from it. Therefore, for future work it would be interesting to calculate the 
solution of the WD equation in compact form, so that some definite relation 
can be drawn between the path integral measure and the factor ordering 
index, comparing with the wave function in the path integral formulation. 

APPENDIX. A STUDY OF CLASSICAL FIELD EQUATIONS 

The classical field equations (8)-(10) reduce to the first-order coupled 
equations 

dx - - = y  
dr/ 

@ 
dr/ 

dz 

dr/ 

du 

d~ 

(A1) 

- -  - - x - y ( z  + 2u) (A2) 

- - -  - z 2 + x 2 - 2 z u  (A3) 

- -  - -  - -  U 2 -t- Z U  - -  y 2  (A4) 

by the substitution 

x - d ? ,  y = _ r n - l d ? ,  z = _ m - l g t ,  u = - - m - l ~  
(A5) 

r t=-rn t ,  a = l n a ,  f l= lnb  

The solutions of this set of first-order equations contain three arbitrary 
constants and represent three-parameter congruence of trajectories in the 
(x, y, z, u) space, as they satisfy the constraint equation 

1 
m 2 e 2~ _ x2 + y 2  _t_ z2 _ (z  + u) 2 (A6) 
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The metric on superspace is 

dS2=(e2(a+2#)m2~b2-e2(a+l~))(da2 + d~2- �89 dr) (A7) 

If we introduce 

y = a - ill4, a = r ig  
then the auxiliary metric becomes 

d S  2 = [e2(r+ga)m2 ~ 2 - e2(r+ 5'~)](dy 2 + d ~  2 - dc~ 2) (A8) 

So the geodesic equations for this auxiliary metric can be written (after 
eliminating the affine parameter) as two second-order equations (Page, 
1984) : 

da 2d2)'- 1-(dy/da)2-(dd)/dt$)2 (e+ f (A9) 

and 

with 

d2ck_ 1-(dYldS)2-(dgbldS) 2 (,,+ fd(a'~ 
(A10) 

d3 2 e ~,S I 

e = e 2(r +5~) - m2~b 2 e 2(7+98) 

f =  5e 2(~+ sS) _ 9mZ{b 2 e2(Y +9~) 

g = --  m2q~ e20 '+9a)  

The constrained phase space can be classified from the point of view of 
temporal oscillations and the stress-energy of the homogeneous scalar field 
~b. The stress-energy tensor has the form of a perfect fluid at rest with energy 
density and pressure (Hawking and Page, 1988) 

p =  ' 5m (x + y  ) (Al l )  

p = �89 ~lrn2"~.y-2 x 2.) (A12) 

The field equation for ~b [equation (10)] shows that the oscillations of ~b are 
overdamped or underdamped accordingly as 

0 2 + 2f l  2 ~ ~m 2 

In the stiff region (i.e., when ~ is strongly overdamped and p - p )  terms 
c o n t a i n i n g  m 2 are insignificant. So, if we neglect the mass term in the action 
(6), then 

pc, = ab2~p = const (A13) 
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Moreover, setting m 2= 0, the auxiliary metric (A8) becomes flat and the 
equations for geodesics simplify to 

= - (1 - ~ 2 _  ~2) (  1 + 5 ~ )  

~ = - ( 1 - s  . 5~ 

(. =d/d8) .  So the trajectories are planes in the three-dimensional space 
(7/, ~b, 6) of the form 

A~b+ 5~'+ 8 = B  (A14) 

The two arbitrary constants A and B parametrize the solution. 
Because the auxiliary metric (A8) is conformally flat, the trajectories 

may also be interpreted as those of a particle of variable mass squared, 

M 2 ___ e2(r + 9S)m2~b2 _ e2(7 + 56) (A15) 

moving in the flat three-dimensional Minkowski metrix - d ~ 2 " - [  - d~'2+ d~b 2. 
At b 2 = 1/m2(~ 2, M 2 vanishes and the auxiliary metric (A8) and the geodesics 
(A9) and (A10) are singular. However, the trajectories simply pass through 
these curves and change from timelike ([bmr < 1) to spacelike (Ibm~b[ > 1). 
The physical metric (2.1) is, however, regular here, but it has a singularity 
at a or b=0. 

ACKNOWLEDGMENTS 

The author is grateful to the Relativity-Cosmology Centre in the 
Department of Physics, Jadavpur University, for helpful discussions. He also 
thanks the UGC-DSA Programme in the Department of Mathematics for 
financial assistance. 

REFERENCES 

Chakraborty, S. (1990a). Pramana, 34, 403. 
Chakraborty, S. (1990b). Physical Review D, 42, 2924. 
Chakraborty, S. (1991). International Journal of Theoretical Physics, 30, 849. 
DeWitt, B. S. (1967). Physical Review, 160, 113. 
Everett, H. (1957). Review of Modern Physics, 29, 454. 
Halliwell, J. J., and Louko, J. (1989). Physical Review D, 40, 1868. 
Hartle, J. B., and Hawking, S. W. (1983). Physical Review D, 28, 2960. 
Hawking, S. W. (1984). In Relativity, Groups and Topology II, B. S. DeWitt and R. Stora, eds., 

North-Holland, Amsterdam. 
Hawking, S. W., and Page, D. N. (I988). Nuclear Physics B, 298, 789. 



302 Chakraborty 

Kiefer, C. (1987). Classical and Quantum Gravity, 4, 1369. 
Kiefer, C. (1988). Physical Review D, 38, 1781. 
Page, D. N. (1984). Classical Quantum Gravity, 1,417. 
Vilenkin, A. (1988). Physical Review D, 37, 888. 


